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Tasks in OpenMP: Scheduling

 Default: Tasks are tied to the thread that first executes them → not neccessarily the

creator. Scheduling constraints:

 Only the thread a task is tied to can execute it

 A task can only be suspended at task scheduling points

 Task creation, task finish, taskwait, barrier, taskyield

 If task is not suspended in a barrier, executing thread can only switch to a direct descendant of

all tasks tied to the thread

 Tasks created with the untied clause are never tied

 Resume at task scheduling points possibly by different thread

 No scheduling restrictions, e.g., can be suspended at any point

 But: More freedom to the implementation, e.g., load balancing
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Unsafe use of untied Tasks

 Problem: Because untied tasks may migrate between threads at any point, thread-centric

constructs can yield unexpected results

 Remember when using untied tasks:

 Avoid threadprivate variable

 Avoid any use of thread-ids (i.e., omp_get_thread_num())

 Be careful with critical region and locks

 Simple Solution:

 Create a tied task region with

#pragma omp task if(0)
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The taskyield Directive

 The taskyield directive specifies that the current task can be suspended in favor of

execution of a different task.

 Hint to the runtime for optimization and/or deadlock prevention

C/C++

#pragma omp taskyield

Fortran

!$omp taskyield
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taskyield Example (1/2)

#include <omp.h>

void something_useful();

void something_critical();

void foo(omp_lock_t * lock, int n)

{

for(int i = 0; i < n; i++)

#pragma omp task

{

something_useful();

while( !omp_test_lock(lock) ) {

#pragma omp taskyield

}

something_critical();

omp_unset_lock(lock);

}

}
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taskyield Example (2/2)

#include <omp.h>

void something_useful();

void something_critical();

void foo(omp_lock_t * lock, int n)

{

for(int i = 0; i < n; i++)

#pragma omp task

{

something_useful();

while( !omp_test_lock(lock) ) {

#pragma omp taskyield

}

something_critical();

omp_unset_lock(lock);

}

}

The waiting task may be

suspended here and allow the

executing thread to perform

other work; may also avoid

deadlock situations.
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Tasks and Dependencies

 Catchy example: Building a house

Landscape

Build 
Walls

Put up 
Roof

Shingle 
Roof

Install 
Electrical Drywall

Exterior 
Siding
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Tasks and Dependencies

 Task dependencies constrain execution order and times for tasks

 Fine-grained synchronization of tasks

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(in: x)

std::cout << x << std::endl;

#pragma omp task depend(inout: x)

x++;

}

Dependenciesint x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task

std::cout << x << std::endl;

#pragma omp task

x++;

}

Traditional task

wait

#pragma omp taskwait

Task wait

Dependencies

t1

t2

t1

t2

Task’s creation time

Task’s execution time
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Questions?


