
Introduction to OpenMP THE COMPETENCE NETWORK FOR HIGH PERFORMANCE COMPUTING IN NRW.

Dr. Christian Terboven

Introduction to OpenMP

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Task Scheduling

Introduction to OpenMP

Dr. Christian Terboven

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Tasks in OpenMP: Scheduling

 Default: Tasks are tied to the thread that first executes them → not neccessarily the

creator. Scheduling constraints:

 Only the thread a task is tied to can execute it

 A task can only be suspended at task scheduling points

 Task creation, task finish, taskwait, barrier, taskyield

 If task is not suspended in a barrier, executing thread can only switch to a direct descendant of

all tasks tied to the thread

 Tasks created with the untied clause are never tied

 Resume at task scheduling points possibly by different thread

 No scheduling restrictions, e.g., can be suspended at any point

 But: More freedom to the implementation, e.g., load balancing

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Unsafe use of untied Tasks

 Problem: Because untied tasks may migrate between threads at any point, thread-centric

constructs can yield unexpected results

 Remember when using untied tasks:

 Avoid threadprivate variable

 Avoid any use of thread-ids (i.e., omp_get_thread_num())

 Be careful with critical region and locks

 Simple Solution:

 Create a tied task region with

#pragma omp task if(0)

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

The taskyield Directive

 The taskyield directive specifies that the current task can be suspended in favor of

execution of a different task.

 Hint to the runtime for optimization and/or deadlock prevention

C/C++

#pragma omp taskyield

Fortran

!$omp taskyield

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

taskyield Example (1/2)

#include <omp.h>

void something_useful();

void something_critical();

void foo(omp_lock_t * lock, int n)

{

for(int i = 0; i < n; i++)

#pragma omp task

{

something_useful();

while(!omp_test_lock(lock)) {

#pragma omp taskyield

}

something_critical();

omp_unset_lock(lock);

}

}

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

taskyield Example (2/2)

#include <omp.h>

void something_useful();

void something_critical();

void foo(omp_lock_t * lock, int n)

{

for(int i = 0; i < n; i++)

#pragma omp task

{

something_useful();

while(!omp_test_lock(lock)) {

#pragma omp taskyield

}

something_critical();

omp_unset_lock(lock);

}

}

The waiting task may be

suspended here and allow the

executing thread to perform

other work; may also avoid

deadlock situations.

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Tasks and Dependencies

Introduction to OpenMP

Dr. Christian Terboven

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Tasks and Dependencies

 Catchy example: Building a house

Landscape

Build
Walls

Put up
Roof

Shingle
Roof

Install
Electrical Drywall

Exterior
Siding

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Tasks and Dependencies

 Task dependencies constrain execution order and times for tasks

 Fine-grained synchronization of tasks

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(in: x)

std::cout << x << std::endl;

#pragma omp task depend(inout: x)

x++;

}

Dependenciesint x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task

std::cout << x << std::endl;

#pragma omp task

x++;

}

Traditional task

wait

#pragma omp taskwait

Task wait

Dependencies

t1

t2

t1

t2

Task’s creation time

Task’s execution time

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Questions?

