
Introduction to OpenMP THE COMPETENCE NETWORK FOR HIGH PERFORMANCE COMPUTING IN NRW.

Dr. Christian Terboven

Introduction to OpenMP

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Tasking

Introduction to OpenMP

Dr. Christian Terboven

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Recursive approach to compute Fibonacci

 Fibonacci numbers

 Form a sequence 𝑭𝒏 such that each number is the sum of the two preceding

 𝑭𝟎 = 𝟎, 𝑭𝟏 = 𝟏

 𝑭𝒏 = 𝑭𝒏−𝟏 + 𝑭𝒏−𝟐 (for 𝑛 > 1)

 On the following slides we will discuss three approaches to parallelize this recursive code
with Tasking.

int main(int argc,

char* argv[])

{

[...]

fib(input);

[...]

}

int fib(int n) {

if (n < 2) return n;

int x = fib(n - 1);

int y = fib(n - 2);

return x+y;

}

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

!$omp task [clause[[,] clause]...]

…structured-block…

!$omp end task

Dependencies

Cutoff Strategies

Data

Environment

The task construct

 Deferring (or not) a unit of work (executable for any member of the team)

 Always attached to a structured block

 if(scalar-expression)

 mergeable

 final(scalar-expression)

 depend(dep-type: list)

 priority(priority-value)

Where clause:

 private(list),

 firstprivate(list),

 shared(list)

 default(shared | none)

 in_reduction(r-id: list) ≥ 5.0

 untied

#pragma omp task [clause[[,] clause]...]

{structured-block}

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Tasks in OpenMP: Data Scoping

 Some rules from Parallel Regions apply:

 Static and Global variables are shared

 Automatic Storage (local) variables are private

 Task variables are firstprivate unless shared in the enclosing context

 Only shared attribute is inherited

 Exception: Orphaned Task variables are firstprivate by default!

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

First version parallelized with Tasking (omp-v1)

 Only one Task / Thread enters fib() from main(), it is responsible for
creating the two initial work tasks

 Taskwait is required, as otherwise x and y would be lost

14 int fib(int n) {

15 if (n < 2) return n;

16 int x, y;

17 #pragma omp task shared(x)

18 {

19 x = fib(n - 1);

20 }

21 #pragma omp task shared(y)

22 {

23 y = fib(n - 2);

24 }

25 #pragma omp taskwait

26 return x+y;

27 }

1 int main(int argc,

2 char* argv[])

3 {

4 [...]

5 #pragma omp parallel

6 {

7 #pragma omp single

8 {

9 fib(input);

10 }

11 }

12 [...]

13 }

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

taskwait directive

 The taskwait directive (shallow task synchronization)

 It is a stand-alone directive

 wait on the completion of child tasks of the current task; just direct children, not all descendant

tasks; includes an implicit task scheduling point (TSP)

#pragma omp taskwait

#pragma omp parallel

#pragma omp single

{

#pragma omp task

{

#pragma omp task

{ … }

#pragma omp task

{ … …}

#pragma omp taskwait

}

} // implicit barrier will wait for C.x

C.1 C.2

wait for…

A

: A

{ … #C.1; #C.2; …}

B C
: B

: C

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Fibonacci Illustration

 T1 enters fib(4)

 T1 creates tasks for fib(3) and fib(2)

 T1 and T2 execute tasks from the queue

 T1 and T2 create 4 new tasks

 T1 - T4 execute tasks

fib(4)

Task Queue

fib(3) fib(2)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(2) fib(1) fib(1) fib(0)

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Fibonacci Illustration

 T1 enters fib(4)

 T1 creates tasks for fib(3) and fib(2)

 T1 and T2 execute tasks from the queue

 T1 and T2 create 4 new tasks

 T1 - T4 execute tasks

 …

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Scalability measurements (1/3)

 Overhead of task creation prevents scalability!

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1 2 4 8 16

Sp
e

e
d

u
p

Threads

Speedup of Fibonacci with Tasks

omp-v1

optimal

The OpenMP runtime

optimizes when there is only

one thread!

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

if Clause

 The if clause of a task construct

 allows to optimize task creation/execution

 reduces parallelism but also reduces the pressure in the runtime’s task pool

 for “very” fine grain tasks you may need to do your own (manual) if

 If the expression of the “if” clause evaluates to false

 the encountering task is suspended

 the new task is executed immediately

 the parent task resumes when the task finishes

 This is known as undeferred task

#pragma omp task if(expression)

{structured-block}

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Improved parallelization with Tasking (omp-v2)

 Improvement: Don‘t create yet another task once a certain (small enough) n is reached

14 int fib(int n) {

15 if (n < 2) return n;

16 int x, y;

17 #pragma omp task shared(x) \

18 if(n > 30)

19 {

20 x = fib(n - 1);

21 }

22 #pragma omp task shared(y) \

23 if(n > 30)

24 {

25 y = fib(n - 2);

26 }

27 #pragma omp taskwait

28 return x+y;

29 }

1 int main(int argc,

2 char* argv[])

3 {

4 [...]

5 #pragma omp parallel

6 {

7 #pragma omp single

8 {

9 fib(input);

10 }

11 }

12 [...]

13 }

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Scalability measurements (2/3)

 Speedup is better, but still not great

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1 2 4 8 16

Sp
e

e
d

u
p

Threads

Speedup of Fibonacci with Tasks

omp-v1

omp-v2

optimal

Small tasks still have

to be allocated in

omp-v2!

login-t, E5-2650 v4, 2x 12 cores @ 2.20 GHz

Intel Compiler 16.0.2, fib(45) = 1134903170

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Improved parallelization with Tasking (omp-v3)

 Improvement: Skip the OpenMP overhead once a certain n is reached (no issue w/

production compilers)

1 int main(int argc,

2 char* argv[])

3 {

4 [...]

5 #pragma omp parallel

6 {

7 #pragma omp single

8 {

9 fib(input);

10 }

11 }

12 [...]

13 }

14 int fib(int n) {

15 if (n < 2) return n;

16 if (n <= 30)

17 return serfib(n);

18 int x, y;

19 #pragma omp task shared(x)

20 {

21 x = fib(n - 1);

22 }

23 #pragma omp task shared(y)

24 {

25 y = fib(n - 2);

26 }

27 #pragma omp taskwait

28 return x+y;

29 }

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Scalability measurements (3/3)

 Looks promising…

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1 2 4 8 16

Sp
e

e
d

u
p

Threads

Speedup of Fibonacci with Tasks

omp-v1

omp-v2

omp-v3

optimal

login-t, E5-2650 v4, 2x 12 cores @ 2.20 GHz

Intel Compiler 16.0.2, fib(45) = 1134903170

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Runtime measurements (1/2)

 First two versions were slow because of overhead!

0

50

100

150

200

250

300

350

400

450

1 2 4 8 16

R
u

n
ti

m
e

 [
s]

Threads

Runtime of Fibonacci with Tasks

omp-v1

omp-v2

omp-v3

login-t, E5-2650 v4, 2x 12 cores @ 2.20 GHz

Intel Compiler 16.0.2, fib(45) = 1134903170

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Runtime measurements (2/2)

 Third version is comparable to serial version w/o OpenMP 

0

1

2

3

4

5

6

7

8

1 2 4 8 16

R
u

n
ti

m
e

 [
s]

Threads

Runtime of Fibonacci with Tasks

omp-v3

serial

login-t, E5-2650 v4, 2x 12 cores @ 2.20 GHz

Intel Compiler 16.0.2, fib(45) = 1134903170

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Tasking Overheads

 Typical overheads in task-based programs are:

 Task creation: populate task data structure, add task to task queue

 Task execution: retrieve a task from the queue (may including work stealing)

 If tasks become too fine-grained, overhead becomes noticeable

 Execution spends a higher relative amount of time in the runtime

 Task execution contributing to runtime becomes significantly smaller

 A rough rule of thumb to avoid (visible) tasking overhead

 OpenMP tasks: 80-100k instructions executed per task

 TBB tasks: 30-50k instructions executed per task

 Other programming models may have another ideal granularity!

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Threads vs Tasks

 Threads do not compose well

 Example: multi-threaded plugin in a multi-threaded application

 Composition usually leads to oversubscription and load imbalance

 Task models are inherently composable

 A pool of threads executes all created tasks

 Tasks from different modules can freely mix

 Task models make complex algorithms easier to parallelize

 Programmers can think in concurrent pieces of work

 Mapping of concurrent execution to threads handled elsewhere

 Task creation can be irregular (e.g., recursion, graph traversal)

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Sometimes You’re Better off with Threads…

 Some scenarios are more amenable for traditional threads

 Granularity too coarse for tasking

 Isolation of autonomous agents

 Static allocation of parallel work is typically easier with threads

 Controlling allocation of work to cache hierarchy

 Graphical User Interfaces (event thread + worker threads)

 Request/response processing, e.g.,

 Web servers

 Database servers

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Questions?

