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Recursive approach to compute Fibonacci

 Fibonacci numbers

 Form a sequence 𝑭𝒏 such that each number is the sum of the two preceding

 𝑭𝟎 = 𝟎, 𝑭𝟏 = 𝟏

 𝑭𝒏 = 𝑭𝒏−𝟏 + 𝑭𝒏−𝟐 (for 𝑛 > 1)

 On the following slides we will discuss three approaches to parallelize this recursive code
with Tasking.

int main(int argc,

char* argv[])

{

[...]

fib(input);

[...]

}

int fib(int n)   {

if (n < 2) return n;

int x = fib(n - 1);

int y = fib(n - 2);

return x+y;

}
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!$omp task [clause[[,] clause]...]

…structured-block…

!$omp end task

Dependencies

Cutoff Strategies

Data 

Environment

The task construct

 Deferring (or not) a unit of work (executable for any member of the team)

 Always attached to a structured block

 if(scalar-expression)

 mergeable

 final(scalar-expression)

 depend(dep-type: list)

 priority(priority-value)

Where clause:

 private(list),

 firstprivate(list),

 shared(list)

 default(shared | none)

 in_reduction(r-id: list) ≥ 5.0

 untied

#pragma omp task [clause[[,] clause]...]

{structured-block}
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Tasks in OpenMP: Data Scoping

 Some rules from Parallel Regions apply:

 Static and Global variables are shared

 Automatic Storage (local) variables are private

 Task variables are firstprivate unless shared in the enclosing context

 Only shared attribute is inherited

 Exception: Orphaned Task variables are firstprivate by default!
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First version parallelized with Tasking (omp-v1)

 Only one Task / Thread enters fib() from main(), it is responsible for
creating the two initial work tasks

 Taskwait is required, as otherwise x and y would be lost

14 int fib(int n)   {

15 if (n < 2) return n;

16 int x, y;

17 #pragma omp task shared(x)

18 {

19 x = fib(n - 1);

20 }

21 #pragma omp task shared(y)

22 {

23 y = fib(n - 2);

24 }

25 #pragma omp taskwait

26 return x+y;

27 }

1 int main(int argc,

2 char* argv[])

3 {

4 [...]

5 #pragma omp parallel

6 {

7 #pragma omp single

8 {

9 fib(input);

10 }

11 }

12 [...]

13 }
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taskwait directive

 The taskwait directive (shallow task synchronization)

 It is a stand-alone directive

 wait on the completion of child tasks of the current task; just direct children, not all descendant 

tasks; includes an implicit task scheduling point (TSP)

#pragma omp taskwait

#pragma omp parallel

#pragma omp single

{

#pragma omp task

{

#pragma omp task

{ … }

#pragma omp task

{ … …}

#pragma omp taskwait

}

} // implicit barrier will wait for C.x

C.1 C.2

wait for…

A

: A

{ … #C.1; #C.2; …}

B C
: B

: C
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Fibonacci Illustration

 T1 enters fib(4)

 T1 creates tasks for fib(3) and fib(2)

 T1 and T2 execute tasks from the queue

 T1 and T2 create 4 new tasks

 T1 - T4 execute tasks

fib(4)

Task Queue

fib(3) fib(2)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(2) fib(1) fib(1) fib(0)
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Fibonacci Illustration

 T1 enters fib(4)

 T1 creates tasks for fib(3) and fib(2)

 T1 and T2 execute tasks from the queue

 T1 and T2 create 4 new tasks

 T1 - T4 execute tasks

 …

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)
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Scalability measurements (1/3)

 Overhead of task creation prevents scalability!
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if Clause

 The if clause of a task construct

 allows to optimize task creation/execution

 reduces parallelism but also reduces the pressure in the runtime’s task pool

 for “very” fine grain tasks you may need to do your own (manual) if

 If the expression of the “if” clause evaluates to false

 the encountering task is suspended

 the new task is executed immediately

 the parent task resumes when the task finishes

 This is known as undeferred task

#pragma omp task if(expression)

{structured-block}
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Improved parallelization with Tasking (omp-v2)

 Improvement: Don‘t create yet another task once a certain (small enough) n is reached

14 int fib(int n)   {

15 if (n < 2) return n;

16 int x, y;

17 #pragma omp task shared(x) \

18 if(n > 30)

19 {

20 x = fib(n - 1);

21 }

22 #pragma omp task shared(y) \

23 if(n > 30)

24 {

25 y = fib(n - 2);

26 }

27 #pragma omp taskwait

28 return x+y;

29 }

1 int main(int argc,

2 char* argv[])

3 {

4 [...]

5 #pragma omp parallel

6 {

7 #pragma omp single

8 {

9 fib(input);

10 }

11 }

12 [...]

13 }
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Scalability measurements (2/3)

 Speedup is better, but still not great
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Improved parallelization with Tasking (omp-v3)

 Improvement: Skip the OpenMP overhead once a certain n is reached (no issue w/ 

production compilers)

1 int main(int argc,

2 char* argv[])

3 {

4 [...]

5 #pragma omp parallel

6 {

7 #pragma omp single

8 {

9 fib(input);

10 }

11 }

12 [...]

13 }

14 int fib(int n)   {

15 if (n < 2) return n;

16 if (n <= 30)

17 return serfib(n);

18 int x, y;

19 #pragma omp task shared(x)

20 {

21 x = fib(n - 1);

22 }

23 #pragma omp task shared(y)

24 {

25 y = fib(n - 2);

26 }

27 #pragma omp taskwait

28 return x+y;

29 }
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Scalability measurements (3/3)

 Looks promising…
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Runtime measurements (1/2)

 First two versions were slow because of overhead!
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Runtime measurements (2/2)

 Third version is comparable to serial version w/o OpenMP 
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Tasking Overheads 

 Typical overheads in task-based programs are:

 Task creation: populate task data structure, add task to task queue

 Task execution: retrieve a task from the queue (may including work stealing)

 If tasks become too fine-grained, overhead becomes noticeable

 Execution spends a higher relative amount of time in the runtime

 Task execution contributing to runtime becomes significantly smaller

 A rough rule of thumb to avoid (visible) tasking overhead

 OpenMP tasks: 80-100k instructions executed per task

 TBB tasks: 30-50k instructions executed per task

 Other programming models may have another ideal granularity!
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Threads vs Tasks

 Threads do not compose well

 Example: multi-threaded plugin in a multi-threaded application

 Composition usually leads to oversubscription and load imbalance

 Task models are inherently composable

 A pool of threads executes all created tasks

 Tasks from different modules can freely mix

 Task models make complex algorithms easier to parallelize

 Programmers can think in concurrent pieces of work

 Mapping of concurrent execution to threads handled elsewhere

 Task creation can be irregular (e.g., recursion, graph traversal)
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Sometimes You’re Better off with Threads…

 Some scenarios are more amenable for traditional threads

 Granularity too coarse for tasking

 Isolation of autonomous agents

 Static allocation of parallel work is typically easier with threads

 Controlling allocation of work to cache hierarchy

 Graphical User Interfaces (event thread + worker threads)

 Request/response processing, e.g., 

 Web servers

 Database servers
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Questions?


