
Parallelization with OpenMP and MPI
A Simple Example (Fortran)

Dieter an Mey, Thomas Reichstein

October 26, 2007

1 Introduction

The main aspects of parallelization using MPI (Message Passing Interface) on one hand and
OpenMP directives on the other hand shall be shown by means of a toy program calculating
π.

Parallelization for computer systems with distributed memory (DM) is done by explicit dis-
tribution of work and data on the processors by means of message passing.

Parallelization for computer systems with shared memory (SM) means automatic distribution
of loop partitions on multiple processors, or the explicit distribution of work on the processors
with compiler directives and runtime function calls (OpenMP).

MPI programs also run on shared memory systems, whereas OpenMP programs do not nor-
mally run on distributed memory machines (one exception is Intel’s Cluster OpenMP)

The combination of a coarse-grained parallelization with MPI and an underlying fine-grained
parallelization of the individual MPI-tasks with OpenMP is an attractive option to use a
maximum number of processors efficiently. This method is known as hybrid parallelization.

3

4

2 Problem definition, serial program and automatic parallelization

π can be calculated as an integral:

π =
∫ 1

o
f(x) dx , with f(x) =

4
(1 + x)2

(2.1)

This integral can be numerically approximated through a quadrature method (rectangle method):

π =
1
n

1∑
i=1

f(xi) , with xi =
(i− 1

2)
n

for i = 1, ..., n (2.2)

The following serial program allows to vary the number of nodes n, until entering zero stops
the execution.

1 ! ***

2 ! fpi.f90 - compute pi by integrating f(x) = 4/(1 + x**2)

3 !

4 ! Variables :

5 !

6 ! pi the calculated result

7 ! n number of points of integration .

8 ! x midpoint of each rectangle ’s interval

9 ! f function to integrate

10 ! sum ,pi area of rectangles

11 ! tmp temporary scratch space for global summation

12 ! i do loop index

13 ! ***

14 !

15 program main

16 !

17 !.. Implicit Declarations ..

18 implicit none

19 !

20 !.. Local Scalars ..

21 integer :: i,n

22 double precision , parameter :: pi25dt = 3.141592653589793238462643 d0

23 double precision :: a,h,pi ,sum ,x

24 !

25 !.. Intrinsic Functions ..

26 intrinsic ABS , DBLE

27 !

28 !.. Statement Functions ..

29 double precision :: f

30 f(a) = 4.d0 / (1.d0+a*a)

31 !

32 ! ... Executable Statements ...

33 !

34 do

35 ! Input

36 write (6 ,10000)

37 read (5 ,10001) n

38 !

39 if (n <= 0) exit ! Finish after input equals zero

40 !

41 h = 1.0d0 / n ! stride

42 ! Calculation of the quadrature formula (summation)

43 sum = 0.0d0

44 do i = 1,n

45 x = h * (DBLE(i)-0.5d0)

46 sum = sum + f(x)

47 end do

48 pi = h * sum

49 ! Output of the solution

50 write (6 ,10002) pi, ABS(pi -pi25dt)

51 end do

5

52 !

53 ! ... Format Declarations ...

54 !

55 10000 format ("Enter the number of intervals: (0 quits)")

56 10001 format (i10)

Entering a 10 followed by a 0, the output looks like the following :

Enter the number of intervals: (0 quits)

pi is approximately: 3.1415926535981615 Error is: 0.0000000000083684

Enter the number of intervals: (0 quits)

The approximated solution is being compared with a solution accurate to the 25th position.

In this simple example the function f(x) being integrated is quit simple and parallelization
only pays off when the number of nodes is quite high. Parallelization of an integral with a
numerically more expensive function would be a lot more profitable.

The program core, to be parallelized, mainly consists of an inner loop, in which the sum of
the values of the function f(x) at the nodes is calculated.

1 h = 1.0d0 / n

2 sum = 0.0d0

3 do i = 1,n

4 x = h * (DBLE(i)-0.5d0)

5 sum = sum + f(x)

6 end do

7 pi = h * sum

The evaluation of the individual loop iterations have to be distributed to several processors.

In this simple case, the compiler is usually able to automatically parallelize this loop for a
shared memory machine. The only problem arises through the recursive use of the variable
sum, which is read and modified with each loop pass, so that every cycle depends on the
previous one. Using the associativity of the summation, parallelization in this case is possible.
These rounding errors usually differ from those caused by serial execution. With the the Sun
Compiler you therefore have to use both the -autopar and the -reduction options.

6

3 Parallelization for distributed memory through Message Passing
with MPI

3.1 Preliminary note

Processes with their own address space have to cooperate in order to utilize parallel machines
with distributed memory. To ease the communication between separate processes, the MPI
Message Passing Library was developed. The sending and receiving of messages is achieved
through standardized subroutine calls, so that an MPI program is portable to all machines
for which an MPI Library is available. With public domain software packages mpich2 or
OpenMPI, every machine that supports the tcp/ip protocol can be used.

MPI programs typically follow the SPMD programming style (Single Program Multiple Data).
All involved MPI-processes, execute the same binary program, and after initialization with
MPI Init, every process gets the total number of parties involved with the call MPI Comm
size and its own identification by calling MPI Comm rank. The task with identification

zero then usually takes charge (“Master”).

3.2 MPI Send and MPI Recv

Here, a so called worker farm is an obvious approach to paralellize this simple example. The
master process takes care of the input and output leaving just the evaluation of the inner loop
to the other processes. Initially the master-process has to provide all its workers with the
necessary data, in this case just the value n and towards the end the worker-processes have
to send the partial results to the master so that the master can combine them to the overall
result.

At the beginning, the master sends the value n with MPI Send to all workers. The workers
in return have to receive the data with MPI Recv.

The partitioning of the loop indices to all tasks was made in cyclic fashion:

do i = myid + 1, n, ntasks

Another option would be to divide the loop iterations into chunks:

chunksize = (n + ntasks - 1) / ntasks

do i = myid * chunksize + 1, min (n, (myid + 1) * chunksize) . . .

Here, the master takes part in the computation, which is not necessarily always the case.
Finally each worker sends its partial sum mypi to the master for collection and adding up the
final result.

All tasks leave with MPI Finalize the MPI environment at program end.

1 program main

2 ...

3 include ’mpif.h’

4 integer :: i,n,myid ,ntasks ,ierr ,islave

5 integer , dimension(MPI_STATUS_SIZE) :: status

6 integer , parameter :: master=0, msgtag1 =11, msgtag2 =12

7 double precision , parameter :: pi25dt = 3.141592653589793238462643 d0

8 double precision :: a,h,pi ,sum ,x, mypi

9 ...

10 ! Initialization of the MPI environment

11 call MPI_INIT(ierr)

12 call MPI_COMM_RANK(MPI_COMM_WORLD , myid , ierr)

13 call MPI_COMM_SIZE(MPI_COMM_WORLD , ntasks , ierr)

7

14 do

15 if (myid == 0) then ! only the master

16 ! Input

17 write (6 ,10000)

18 read (5 ,10001) n

19 ! Distribution of the input data (here just n)to all slaves

20 do islave = 1, ntasks -1

21 call MPI_Send (n,1,MPI_INTEGER ,islave , &

22 sgtag1 ,MPI_COMM_WORLD ,ierr)

23 end do

24 else ! all slaves

25 ! Receiving the input data

26 call MPI_Recv (n,1,MPI_INTEGER ,master , &

27 msgtag1 ,MPI_COMM_WORLD ,status ,ierr)

28 end if

29 if (n <= 0) exit ! Finish when input is zero

30 h = 1.0d0 / n ! stride

31 ! parallel calculation of the quadrature formula

32 sum = 0.0d0

33 do i = myid+1, n, ntasks

34 x = h * (DBLE(i)-0.5d0)

35 sum = sum + f(x)

36 end do

37 mypi = h * sum

38 ! Collection of the subtotals

39 if (myid /= 0) then ! Master

40 call MPI_Send (mypi ,1, MPI_DOUBLE_PRECISION ,master , &

41 msgtag2 ,MPI_COMM_WORLD ,ierr)

42 else ! Slaves

43 pi = mypi

44 do islave = 1, ntasks -1

45 call MPI_Recv (mypi , 1, MPI_DOUBLE_PRECISION ,islave ,msgtag2 , &

46 MPI_COMM_WORLD ,status ,ierr)

47 pi = pi + mypi

48 end do

49 ! Output of the solution

50 write (6 ,10002) pi, ABS(pi -pi25dt)

51 endif

52 !

53 end do

54 call MPI_FINALIZE(ierr)

55 ...

56 end program main

3.3 MPI Bcast and MPI Reduce

The frequent operations “one sends to all“ and ”all send to one“ can be implemented more
elegantly through the special MPI calls MPI Bcast and MPI Reduce respectively. These
calls are designed in such a way, that to differentiate between sender and receiver no control
structures have to be programmed, just the so called root-parameter has to be set.

Attention: When using the reduction function MPI Reduce in conjunction with the pa-
rameter MPI SUM its not warranted that you allways receive a numerically identical result,
since the MPI library takes advantage of the associativity of the summation. This can result
in differend rounding errors.

1 program main

2 ...

3 call MPI_INIT(ierr)

4 call MPI_COMM_RANK(MPI_COMM_WORLD , myid , ierr)

5 call MPI_COMM_SIZE(MPI_COMM_WORLD , numprocs , ierr)

6 do

7 ...

8 call MPI_BCAST(n,1,MPI_INTEGER ,master ,MPI_COMM_WORLD ,ierr)

9 if (n <= 0) exit

10 h = 1.0d0 / n

11 sum = 0.0d0

12 do i = myid+1, n, numprocs

13 x = h * (DBLE(i)-0.5d0)

8

14 sum = sum + f(x)

15 end do

16 mypi = h * sum

17 ! collect all the partial sums

18 call MPI_REDUCE (mypi ,pi ,1, MPI_DOUBLE_PRECISION ,MPI_SUM ,master , &

19 MPI_COMM_WORLD ,ierr)

20 if (myid == 0) then

21 write (6 ,10002) pi, ABS(pi -pi25dt)

22 endif

23 end do

24 call MPI_FINALIZE(rc)

25 ...

26 end program main

9

10

4 Parallelization for Shared Memory through OpenMP Directives

4.1 Preliminary note

For shared memory programming OpenMP is the de facto standard. The OpenMP API is
defined for Fortran, C and C++, it comprises of compiler directives, runtime routines, and
environment variables.

At the beginning of the first parallel region of an OpenMP program (these are the program
parts between parallel and end parallel directives), several lightweight processes sharing
one address space, so called Threads, are started. These threads execute the parallel region
redundantly until they reach a so called Worksharing Construct, in which the arising work
(usually Fortran DO , or C/C++ for loops) is divided among the Threads.
Normally Threads can access all data (shared data) likewise.
Attention: In case several Threads modify the same shared data, access to it has to be pro-
tected in Critical Regions (program parts between critical and end critical directives(Fortran)).
Private Data in which the individual Threads store their temporary data can be used as well.
Local data of subprograms, which are called inside of parallel regions, are private too, because
they are put on the stack. As a consequence, they do not maintain their contents from one
call to the next!

4.2 The parallel and end parallel, the do and end do Directives

Again, the inner loop shall be parallelized, here with OpenMP directives.

1 h = 1.0d0 / n

2 sum = 0.0d0

3 do i = 1,n

4 x = h * (DBLE(i)-0.5d0)

5 sum = sum + f(x)

6 end do

7 pi = h * sum

The first step is to surround the inner loop with parallel and end parallel directives
respectively. To prevent that all threads execute this loop redundantly, the loop is further
enclosed by do and end do directives in order to distribute the loop iterations to all processors
(worksharing).

Since by default all variables are accessible by all threads (shared), the exceptions have to be
taken care of. A first candidate for privatization is the loop index i. If the loop iterations shall
be distributed, the loop index has to be private. This is realized through a private clause of
the parallel directive. As a second candidate for privatization there is the variable x, which
is used to temporally store the node of the quadrature formula. This happens independently
for each loop iteration and the variable contents is not needed after the loop.

With the usage of the summation variable sum it gets more complicated. On the one hand,
the variable is used by all threads equally to calculate the sum of the quadrature formula,
on the other hand it is set to zero prior to the loop and is needed after the loop to calculate
the final solution. Would the variable be shared, the following problem could arise: a thread
reads the value of sum from memory and puts it in the cache to add up his newly calculated
value of f(x). But before the sum can be written back to memory, another thread may read
sum from memory to also add up a new function value. This way the contribution of the first
thread may be lost.

11

This situation can be avoided, if only the function values are computed in parallel and stored
in an auxiliary array fx and the summation is processed by the master thread only.

1 program main

2 double precision , allocatable , dimension (:) :: fx

3 ...

4 do

5 ! Input

6 write (6 ,10000)

7 read (5 ,10001) n

8 allocate (fx(n),STAT=ierror)

9 if (n <= 0) exit ! Finish after input of zero

10 h = 1.0d0 / n ! stride

11 sum = 0.0d0

12 !$omp parallel private(i,x) shared(h,fx ,n)

13 !$omp do

14 do i = 1,n

15 x = h * (DBLE(i)-0.5d0)

16 fx(i) = f(x)

17 end do

18 !$omp end do

19 !$omp end parallel

20 do i = 1,n

21 sum = sum + fx(i)

22 end do

23 pi = h * sum

24 ! Output of the solution

25 write (6 ,10002) pi, ABS(pi -pi25dt)

26 deallocate (fx)

27 end do

28 ...

29 end program main

The array fx can confidently be declared shared with the corresponding clause of the parallel
directive (this also is the default), since the individual threads use different loop indexes i and
thus access different components of the array fx.

4.3 The critical and end critical Directives

The second solution makes use of the possibility to protect code sequences in critical regions,
in which several threads modify shared variables. Critical regions are segments of code which
can only be executed by a single thread at a time.

1 program main

2 ...

3 sum = 0.0d0

4 !$omp parallel

5 !$omp do private(i,x)

6 do i = 1,n

7 x = h * (DBLE(i)-0.5d0)

8 !$omp critical

9 sum = sum + f(x)

10 !$omp end critical

11 end do

12 !$omp end do

13 !$omp end parallel

14 pi = h * sum

15 ...

16 end program main

This version however involves quite some overhead, because it introduces a synchronization
with every iteration of the inner loop.

12

The next version introduces an additional private variable, in which the individual threads
sum up their contributions. The total sum is then computed in a critical region after the
parallel loop.

1 program main

2 double precision :: a,h,pi ,sum ,x,sum_local

3 ...

4 h = 1.0d0 / n

5 sum = 0.0d0

6 !$omp parallel private(i,x,sum_local)

7 sum_local = 0.0d0

8 !$omp do

9 do i = 1,n

10 x = h * (DBLE(i)-0.5d0)

11 sum_local = sum_local + f(x)

12 end do

13 !$omp end do

14 !$omp critical

15 sum = sum + sum_local

16 !$omp end critical

17 !$omp end parallel

18 pi = h * sum

19 ...

20 end program main

This solution finally executes with a reasonable speedup.

4.4 The reduction clause

Exactly for this case there exists - analogous to the reduction function in MPI - a reduction
clause of the do directive. Through its usage, the parallel program gets pleasantly short and
manageable.

Attention: When the reduction clause is used with the + operator it is not warranted
that numerically identical solutions are generated everytime, because the associativity of the
summation is utilized. Different rounding errors can occur as a result.

1 program main

2 ...

3 h = 1.0d0 / n

4 sum = 0.0d0

5 !$omp parallel private(i,x)

6 !$omp do reduction (+: sum)

7 do i = 1,n

8 x = h * (DBLE(i)-0.5d0)

9 sum = sum + f(x)

10 end do

11 !$omp end do

12 !$omp end parallel

13 pi = h * sum

14 ...

15 end program main

This version can be programmed even more concise with just one directive.

1 program main

2 ...

3 h = 1.0d0 / n

4 !

5 sum = 0.0d0

6 !$omp parallel do private(i,x) reduction (+: sum)

7 do i = 1,n

8 x = h * (DBLE(i)-0.5d0)

9 sum = sum + f(x)

10 end do

11 pi = h * sum

12 ...

13 end program main

13

4.5 The single and end single, and the barrier Directives

Yet, the usage of OpenMP does not limit itself just on parallelizing (inner)loops. In the
following example the entire executable part of the program is enclosed in the parallel region.

1 program main

2 ...

3 !$omp parallel private(i,x)

4 do

5 !

6 !$omp single

7 write (6 ,10000)

8 read (5 ,10001) n

9 h = 1.0d0 / n

10 sum = 0.0d0

11 !$omp end single

12 !

13 if (n <= 0) exit

14 !$omp do reduction (+: sum)

15 do i = 1,n

16 x = h * (DBLE(i)-0.5d0)

17 sum = sum + f(x)

18 end do

19 !$omp end do

20 !$omp single

21 pi = h * sum

22 write (6 ,10002) pi, ABS(pi -pi25dt)

23 !$omp end single

24 end do

25 !$omp end parallel

26 ...

27 end program main

Therefore read and writes are enclosed in single and end single directives, causing ex-
ecution just by a single thread, the first one to reach this point in the program code. The
end single directive contains an implicit barrier, so that when the if statement is reached,
all threads use the current value of the just read variable n. The evaluation of the stride h
and the initialization of the summation variable sum is done by this simple thread too. The
barrier which is included in the end single directive before the inner loop is quite impor-
tant! Without the barrier, it would be possible that an “early” thread already has delivered
its contribution the summation, when a “later” thread puts the first summation variable to
zero. Thus, the contribution of the “early” thread would be lost.

4.6 Orphaning

The next OpenMP-program version explores the possibility of orphaning. Directives inside of
a parallel region do not necessarily have to be included in the same program module. They
also can reside in subprograms which are called from inside a parallel region.

1 program main

2 ...

3 !$omp parallel

4 do

5 !

6 !$omp single

7 write (6 ,10000)

8 read (5 ,10001) n

9 !$omp end single

10 if (n <= 0) exit

11 call calc_pi (n, pi)

12 !$omp single

13 write (6 ,10002) pi, ABS(pi -pi25dt)

14 !$omp end single

15 end do

16 !$omp end parallel

17 ...

18 end program Main

14

19 subroutine calc_pi (n, pi)

20 !

21 integer , intent(in) :: n

22 double precision , intent(out) :: pi

23 !

24 !.. Local Scalars ..

25 double precision , save :: sum , h ! sum and h are shared

26 integer :: i

27 double precision :: a,x

28 !

29 !.. Statement Functions ..

30 double precision :: f

31 f(a) = 4.d0 / (1.d0+a*a)

32 !

33 !$omp single

34 h = 1.0d0 / n

35 sum = 0.0d0

36 !$omp end single

37 !$omp do reduction (+: sum) private(i,x)

38 do i = 1,n

39 x = h * (DBLE(i)-0.5d0)

40 sum = sum + f(x)

41 end do

42 !$omp end do

43 !$omp single

44 pi = h * sum

45 !$omp end single

46 return

47 end subroutine calc_pi

Hence the evaluation of the inner loops including the pre- and postprocessing has been
sourced out to the subprogram calc pi. The main program now just consists of the input
and output parts and the outer loop. Here one has to bear in mind that usually all local
variables of such a subprogram are automatically private since they are allocated on the stack.
Otherwise multiple threads could not concurrently pass through the same sub program, since
they then would destroy each others local variables (thread safety!). In this case however the
variables h and sum are supposed to be used shared! So they have to be explicitly declared
static. In Fortran this can be done with COMMON blocks, through modules, or with the
SAVE attribute. In C variables have to be declared static.

4.7 The omp get thread num and omp get num threads functions

The last program version suggests that one is not tied to the parallelization of loops when
programming with OpenMP. On the contrary, through the usage of the function calls omp get
thread num, and omp get num threads, which provide the thread-identification and the

number of active threads resp., one can develop a program which reminds of the MPI version.

1 program main

2 ...

3 integer :: omp_get_thread_num , omp_get_num_threads

4 integer :: myid ,numthreads

5 double precision :: sum_local

6 !$omp parallel private(i,x,sum_local ,myid)

7 myid = omp_get_thread_num ()

8 numthreads = omp_get_num_threads ()

9 do

10 !$omp single

11 write (6 ,10000)

12 read (5 ,10001) n

13 h = 1.0d0 / n

14 sum = 0.0d0

15 !$omp end single

16 !

17 if (n <= 0) exit

18 sum_local = 0.0d0

19 !$omp barrier

20 do i = myid+1, n, numthreads

21 x = h * (DBLE(i)-0.5d0)

15

22 sum_local = sum_local + f(x)

23 end do

24 !$omp critical

25 sum = sum + sum_local

26 !$omp end critical

27 !$omp barrier

28 !$omp single

29 pi = h * sum

30 write (6 ,10002) pi, ABS(pi -pi25dt)

31 !$omp end single

32 end do

33 ...

34 end program main

16

5 Hybrid Parallelization using MPI and OpenMP

Parallelization with MPI on the top (coarse-grained) layer and with OpenMP on the bottom
(fine-grained) layer can easily be combined. Thereby individual MPI-tasks are parallelized
with OpenMP, or viewed from another angle, the MPI-library calls take place in the serial
regions.

1 program main

2 ...

3 integer :: i,n,myid ,numtasks ,ierr ,rc

4 double precision ,parameter :: pi25dt =3.141592653589793238462643 d0

5 double precision :: a,h,mypi ,pi ,sum ,x

6 ...

7 call MPI_INIT(ierr)

8 call MPI_COMM_RANK(MPI_COMM_WORLD , myid , ierr)

9 call MPI_COMM_SIZE(MPI_COMM_WORLD , numtasks , ierr)

10 do

11 if (myid .eq. 0) then

12 write (6 ,10000)

13 read (5 ,10001) n

14 end if

15 call MPI_BCAST(n,1,MPI_INTEGER ,0,MPI_COMM_WORLD ,ierr)

16 if (n <= 0) exit

17 h = 1.0d0 / n

18 sum = 0.0d0

19 !$omp parallel do reduction (+: sum) private(i,x)

20 do i = myid+1, n, numtasks

21 x = h * (DBLE(i)-0.5d0)

22 sum = sum + f(x)

23 end do

24 mypi = h * sum

25 call MPI_REDUCE(mypi ,pi ,1, MPI_DOUBLE_PRECISION ,MPI_SUM ,0, &

26 MPI_COMM_WORLD ,ierr)

27 if (myid .eq. 0) then

28 write (6 ,10002) pi, ABS(pi -pi25dt)

29 endif

30 !

31 end do

32 call MPI_FINALIZE(ierr)

33 ...

34 end program main

In this simple example a single OpenMP directive has to be introduced into the MPI version,
to demonstrate a valid hybrid program.

17

18

