& HPC.NRW

Introduction to OpenMP

Dr. Christian Terboven

THE COMPETENCE NETWORK FOR HIGH PERFORMANCE COMPUTING IN NRW.

Introduction to OpenMP

Dr. Christian Terboven

False Sharing

©N0IO)

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

k8 HPC.NRW

@O0
Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Memory Bottleneck HPC.NRW

— There is a growing gap between core and memory performance:
— memory, since 1980: 1.07x per year improvement in latency

— single core: since 1980: 1.25x per year until 1986, 1.52x p. y. until 2000, 1.20x per year until 2005,
then no change on a per-core basis

100,000

10,000 e . : SPECint benchmark
performance

1000 o

‘]Dﬂ_ ..

Performance

[e R e e e e—— Latency

1930 1995 2000 2005 2010
Year

— Source: John L. Hennessy, Stanford University, and David A. Patterson, University of California, September 25, 2012 @ @@

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

1980 1985

Caches HPC.NRW
_ CPU is fast / ﬁ \

— Caches:

— Fast, but expensive

— Order of 3.0 GHz
— Thus small, order of MB]

— Memory is slow
— Order of 0.3 GHz
— Large, order of GB

memory

=

Nolo
Introduction to OpenMP INNOVATION THROUGH COOPERATION.

— A good utilization of caches is crucial for good \
performance of HPC applications!

Visualization of the Memory Hierarchy HPC.NRW

— Latency on the Intel Westmere-EP 3.06 GHz processor

20 - - - -
18 - 1 1 I
. 1 |
w14 11 I
c [[[
£ 12 el 2l 2
ge Stal [ig
1 6 - =1 |
4 - l l
2 | |
DO OO0 MMNM@NMM M
vﬁ-g%8§¥§§§§§§§§§®
N *F@&afﬁ‘ﬁgggN
Memory Footprint () DO

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Data in Caches

k8 HPC.NRW

— When data is used, it is copied into caches.

— The hardware always copies chunks into
the cache, so called cache-lines.

— This is useful, when:
— the data is used frequently (temporal locality)

— consecutive data is used which is on
the same cache-line (spatial locality)

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

e

\.

=

©N0IO)

False Sharing HPC.NRW

— False Sharing occurs when m ﬂ

— different threads use elements of the same cache-line

— one of the threads writes to the cache-line

— As a result the cache line is moved
between the threads, although there
Is no real data dependency

— Note: False Sharing is a performance problem,
not a correctness issue \

=

Nolo
Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Summing up vector elements again

k8 HPC.NRW

#pragma omp parallel
{

#pragma omp for
for (1 = 0; 1 < 99; i++)

{

s =s + a[i];

}

} // end parallel

doi=0,24
s=s+a(i)
end do

doi=0,99
s=s+
a(i)

end do

doi =25, 49
s=s+a(i)
end do

doi=250, 74
s=s+a(i)
end do

doi=75,99
s=s+a(i)
end do

©Nole

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

False Sharing HPC.NRW

1 double s priv[nthreads];

2 #pragma omp parallel num_threads(nthreads)
3 A

4 int t=omp_get thread num();

5 #pragma omp for

6 for (i = 0; i < 99; i++)

7 {

8 s priv[t] += a[i];

9 }
10 } // end parallel
11 for (i = ©; i < nthreads; i++)
12 {
13 S += s_priv[i];
14 '}

@O0
Introduction to OpenMP INNOVATION THROUGH COOPERATION.

False Sharing HPC.NRW

4000
— No performance benefit for more threads!

— Reason: false sharing of s_priv
— Solution: padding so that only

3000

MFLOPS
N
o
=)
(<)

one variable per cache line is used 1000
T —
0
12 3 456 7 8 9 1011 12
#threads
—with false sharing —without false sharing
cache line 1 cache line 2
Standard 1121314 " mow
With padding 1 2 3| ==
QD 00

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

False Sharing avoided HPC.NRW

1 double s _priv[nthreads * 8];

2 #pragma omp parallel num_threads(nthreads)
3 {

4 int t=omp_get thread num();

5 #pragma omp for

6 for (i = 0; 1 < 99; i++)

7 {

8 s priv[t * 8] += a[i];

9 }
10 } // end parallel
11 for (i = 9; 1 < nthreads; i++)
12 {
13 S += s _priv[i * 8];
14 }

@O0
Introduction to OpenMP INNOVATION THROUGH COOPERATION.

k8 HPC.NRW

@O0
Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Introduction to OpenMP

Dr. Christian Terboven

Example: Pl

Nolo
Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Example: Pi HPC.NRW

1 double f(double x) 1
2 A j 4

* . 7'[o -
3 return (4.0 / (1.0 + x*x)); 1+ x2
4 } 0
5
6 double CalcPi (int n)
7 A
8 const double fH = 1.0 / (double) n; 4 — : : T4
9 double fSum = 0.0; 3_5/ "-,H.. e
10 double fX; '-.,"
11 int i; i . I
12 25t .‘h‘hh 125
13 #pragma omp parallel for 2t T 2
14 for (1 = 0; 1 < n; i++) 15l \15
15 { 1t 11
16 fX = fH * ((double)i + 0.5);
17 fSum += f(fX); °° T
18 } -%.5 0 05 1 1.%
19 return fH * fSum;
20 }

@O0
Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Example: Pi HPC.NRW

What is
1 double f(double x) . 1
2§ wrong with 4
3 return (4.0 / (1.0 + x*x)); this COde? = j 1 + x2
4 } 0
5
6 double CalcPi (int n)
7 A
8 const double fH = 1.0 / (double) n; 4 — : : T4
9 double fSum = 0.0; 3_5/ nx e
10 double fX; ""..
11 int i; i I [§
12 25 "-._‘h 25
13 #pragma omp parallel for 21 T £
14 for (1 = 0; 1 < n; i++) . \1_5
e { 1t 11
16 fX = fH * ((double)i + 0.5);
17 fSum += f(fX); o e
18 } N 0 05 1 s
19 return fH * fSum;
20 }

@O0
Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Example: Pi HPC.NRW

1 double f(double x) 1
2 A j 4

* . T = S
3 return (4.0 / (1.0 + x*x)); 1 + x2
4 } 0
5
6 double CalcPi (int n)
7 A
8 const double fH = 1.0 / (double) n; 4 — : : T4
9 double fSum = 0.0; 3_5/ “-.,.. lag
10 double fX; "»."
11 int i; | I i
12 25t hh"-.. 5
13 #pragma omp parallel for private(fX,i) reduction(+:fSum) 2 i aE
14 for (1 = @; 1 < n; i++) 15l \15
15 { il];
16 fX = fH * ((double)i + 0.5);
17 fsum += f(fX); °° T
18 } -%.5 1] 05 1 1.%
19 return fH * fSum;
20 }

@O0
Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Example: Pi

k8 HPC.NRW

oo NOoOYuUuI D WDN PR

R R R R
W INR OO

14
15
16
17
18
19
20

double f(double x)

{
return (4.0 / (1.0 + x*x));
}
double CalcPi (int n)
{
const double fH = 1.0 / (double) n;
double fSum = 0.0;
double fX;
int i;

#pragma omp parallel for private(fX,i) reduction{+:fSum)
for (1 = @; 1 < n; i++)
{
fX = fH * ((double)i + 0.5);
fSum += f(fX);
}

return fH * fSum;

What if we
had forgotten

this?

©Nole

Introduction to OpenMP INNOVATION THROUGH COOPERATION

-
Race Condition HPC.NRW

— Data Race: the typical OpenMP programming error, when:
— two or more threads access the same memory location, and
— at least one of these accesses is a write, and
— the accesses are not protected by locks or critical regions, and
— the accesses are not synchronized, e.g. by a barrier.

— Non-deterministic occurrence: e.g. the sequence of the execution of parallel loop iterations
is non-deterministic and may change from run to run

— In many cases private clauses, barriers or critical regions are missing

— Data races are hard to find using a traditional debugger
— Use tools like Intel Inspector XE, ThreadSanitizer, Archer
P @00

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Inspector XE - Results HPC.NRW

rO01ti3 (¥ ¥

[Locate Deadlocks and Data Races Intel Inspector XE 2011

@ Target|| © Analysis Type || B Collection Log

1 detected problems

Filters Sort~ o ¥
2 fllters 1D s Problem Sources Modules State Severity
de | ti PL___x Datarace pic plexe MNew . R 1 item(s)
3 code location _—
Data race 1 itemi(s)
Source
pi.c 1 item(s)
Module
pi.exe 1 itemi(s)
State
1 New 1 itemi(s)
i Suppressed
Code Locations [Code Locations |/ Timeline § Mot suppressed 1 itemis)
D Description & Source Function Module A Investigated
=Xl Read pi.c:T1 CalcPi pi.exe Not investigated 1 item(s)
69 {
78 fX = fH * (({double)i + 8.5);
H H 71 fSum += f(fX);
The missing 7
d t . 73 return fH * fSum;
re UC Ion IS X2 Write pi.c:?l CalcPi pi.exe
&9 {
deteCted 78 fX = fH * (({double)i + 8.5);
71 f5um += F(fX):
72 } 3
73 return fH * fSum; -

@O0
Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Example: Pi

k8 HPC.NRW

00O NOUVUT D WN PR

R R R R
W NR OO

14
15
16
17
18
19
20

double f(double x)

{
return (4.0 / (1.0 + Xx*Xx));
}
double CalcPi (int n)
{
const double fH = 1.0 / (double) n;
double fSum = 0.0;
double fX;
int i;

#pragma omp parallel for private(fX,i,fSum)
for (1 = 0; 1 < n; i++)
{
fX = fH * ((double)i + ©.5);
fSum += f(fX);
}

return fH * fSum;

What if we just
made the fSum
variable private?

fSum ==
(no update to
global variable)

©Nole

Introduction to OpenMP INNOVATION THROUGH COOPERATION

-___
Example: Pi Scalability HPC.NRW

— Results forn =2 -10°:

Threads Runtime [sec.] Speedup
1 1.141 1.00
2 0.575 1.96
4 0.298 3.93
8 0.161 7.08

System: CLAIX2018 Node (Intel Xeon 8160)
Compiler: Intel Compiler 19.0, Flags: —fopenmp —O3
— Scalability is good (for up to 8 threads):
— About 100% of the runtime has been parallelized.

— As there is just one parallel region, there is virtually no overhead introduced by the
parallelization.

— Problem is parallelizable in a trivial fashion ...

©N0IO)

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Questions?

@O0
Introduction to OpenMP INNOVATION THROUGH COOPERATION.

	Introduction to OpenMP
	Introduction to OpenMP�
	Foliennummer 3
	Memory Bottleneck
	Caches
	Visualization of the Memory Hierarchy
	Data in Caches
	False Sharing
	Summing up vector elements again
	False Sharing
	False Sharing
	False Sharing avoided
	Foliennummer 13
	Introduction to OpenMP�
	Example: Pi
	Example: Pi
	Example: Pi
	Example: Pi
	Race Condition
	Inspector XE – Results
	Example: Pi
	Example: Pi Scalability
	Questions?

