
INTRODUCTION TO LINUX
(in an HPC context)

Version 20.09 HPC.NRW Competence Network

THE COMPETENCE NETWORK FOR HIGH­PERFORMANCE COMPUTING IN NRW.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

SHELL SCRIPTS
HPC.NRW Competence Network

INTRODUCTION TO LINUX

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

SHELL SCRIPTS

– Interaction with Linux: just a series of commands
– Commands can be put into a text file
– Text file is fed to console
– Console runs commands one after the other

– Advantage: very easy automation

– Shell script: execute like a program
– Remember “execute” permissions

Introduction to Linux

https://creativecommons.org/licenses/by-sa/4.0/deed.en

EXECUTING SHELL SCRIPTS

– Command to run script
– Full script name (including location)
– Commonly: ./scriptname.sh

– Why not only script name?
– Linux only looks up commands in specific folders

– Safety feature (not everyone can run everything)

– File needs execute permissions
– Another safety feature
– Remember chmod command (e.g. chmod u+x)

Introduction to Linux

https://creativecommons.org/licenses/by-sa/4.0/deed.en

EXAMPLE SHELL SCRIPT

#!/bin/bash

This is a comment line.
echo "Hello world."

ls -l
sleep 3s
ls \
-l

So-called “shebang”
– Always has to be first line
– Comment plus exclamation point
– Specifies interpreter (here bash)
– Does not have to be Linux
console (/usr/bin/python)

Comment symbol
– Line comments only
– Sometimes meta-commands

Echo command
– Common command
– Debugging, logging

List of commands
– Same as when
entered manually

Line break
– Backslash as last character

Introduction to Linux

https://creativecommons.org/licenses/by-sa/4.0/deed.en

VARIABLES

– Store output of commands

– Assignment via = (equal sign)
– Example: var="value"
– Important: no spaces around =
– Always text
– Quotes necessary when whitespace, special characters in value

– Retrieve with $ sign

$var

– Example: echo $var prints value to screen

Introduction to Linux

https://creativecommons.org/licenses/by-sa/4.0/deed.en

VARIABLES

– Common newbie trap: brackets and quotes in variables
– Single quotes: exact text
– Double quotes: variables will be expanded
– Parentheses (round brackets): command inside will be evaluated

– var=“bla” will save the text bla to var

– var=‘$bla’ will save the text $bla to var

– var=“$bla” will look for a variable named bla

– var=$(bla) will execute command bla and save its output to var

Introduction to Linux

https://creativecommons.org/licenses/by-sa/4.0/deed.en

SHELL SCRIPTS: ADDITIONAL TIPS

– Use command line arguments: $0 - $9 , ${10}

– Example: script was called with script.sh -f 5.0

– Then: $0=script.sh , $1=-f , $2=5.0

– Loops and if statements, similar to most programming languages

for file in $(ls); do
echo item: $file

done

if [-e $filename]; then
echo "$filename exists."

fi

Introduction to Linux

https://creativecommons.org/licenses/by-sa/4.0/deed.en

SHELL SCRIPTS: VARIOUS THINGS

– Shell scripts are good for running series of commands
– Not so good for more complex programming

– Loops, ifs etc. are an afterthought
– I don’t know of an IDE or debugger
– Can delete wrong file(s) very easily

– Better: “proper” scripting language (e.g. Python)

– Default shell in most Linux systems (e.g. Ubuntu, CentOS): bash
– Many alternatives: C-Shell(csh), Z Shell(zsh), Fish(fish)

– Often completely different syntax
– Prefer portable shell programming where possible

Introduction to Linux

https://creativecommons.org/licenses/by-sa/4.0/deed.en

